분류 전체보기 1385

Naive Bayes Classifier

Naive Bayes Classifier [정의] Bayes' Theorem에 근거한 분류법이며 naïve Bayes 알고리즘은 문서를 통계적 기법을 이용하여 클래스를 규정하는 알고리즘이다. Naive Bayes라는 이름의 Naïve는 이 알고리즘이 Bayes 기술을 사용하지만 있을 수 있는 종속성을 고려하지 않는 다는 것이다. 이 알고리즘은 입력 열과 예측 가능한 열 간의 관계를 검색하는 마이닝 모델을 신속하게 생성하는데 유용하다. 이 알고리즘을 사용하여 초기 데이터 탐색을 수행한 후 나중에 그 결과를 적용하여 보다 복잡하고 정확한 다른 알고리즘으로 추가 마이닝 모델을 만들 수 있다. [활용 사례] 대표적인 사용 사례가 스팸 메일 필터에 사용한다. 이전에 스팸으로 처리한 문서를 기반으로 앞으로 들어오는..

군집분석(Cluster Analysis)

군집분석(Cluster Analysis) 군집분석은 개인 또는 여러 개체 중에서 유사한 속성을 지닌 대상을 몇 개의 집단으로 그룹화 한 다음 각 집단의 성격을 파악함으로써 데이터 전체의 구조에 대해 이해하고자 하는 탐색적 분석 기법이다. N개의 관찰치를 대상으로 p개의 변수를 측정 했을 때 관측한 p개의 변수 값을 이용하여 N개의 관찰치 사이의 유사성 또는 비유사성의 정도를 측정하여 관찰치들을 가까운 순서대로 군집화 한다. 군집분석은 속성이 비슷한 잠재 고객들끼리 그룹화 하여 시장을 세분화하는 방법에 자주 활용되고 있으며 나이, 학력, 소득 제품, 매장 등 유사한 대상끼리 집단으로 묶고자 하는 경우 사용할 수 있다. 군집분석의 목적은 관찰치들의 유사성을 측정한 후에 가까운 순서대로 관찰치들을 군집화 하는..

의사결정나무(Decision Tree)

의사결정나무(Decision Tree) 의사결정나무(Decision Tree)는 의사결정규칙(Decision Rule)을 나무구조로 도표화하여 분류와 예측을 수행하는 분석 방법이다. 분류 또는 예측의 과정이 나무구조에 의한 추론규칙에 의해서 표현되기 때문에 다른 방법(신경망, 판별분석, 회귀분석 등)에 비하여 연구자가 그 과정을 쉽게 이해하고 설명할 수 있다는 장점을 가지고 있다. 장점단점해석의 용이성 교호효과의 해석 비모수적 모형비연속성 선형성 또는 주효과의 결여 비안정성 데이터마이닝에서의 의사결정나무는 탐색과 모형화라는 두 가지 특성을 모두 가지고 있다고 할 수 있다. 판별분석 또는 회귀분석등과 같은 모수적 모형을 분석하기 위하여 사전에 이상치를 검색하거나 분석에 필요한 변수 또는 모형에 포함되어야 ..

로지스틱 회귀분석(Logistic regression)

로지스틱 회귀분석(Logistic regression) 로지스틱 회귀분석은 분석하고자 하는 대상들이 두 집단 혹은 그 이상의 집단(다변수 데이터)으로 나누어진 경우에 개별 관측치들이 어느 집단으로 분류될 수 있는가를 분석하고 이를 예측하는 모형을 개발하는데 사용되는 대표적인 통계 알고리즘 이다. 로지스틱 회귀분석은 분석 목적이나 절차에 있어서는 일반 회귀분석과 유사하나 종속 변수가 명목척도로 측정된 범주형 질적 변수인 경우에 사용한다는 점에서 일반 회귀분석과 차이가 있다. 로지스틱 회귀분석은 판별분석과는 달리 예측변수에 범주형 변수를 투입 할 수 있는 장점이 있다.가장 일반적인 예로 로지스틱 회귀에서는 성별을 매우 자연스럽게 예측 변수로 포함할 수 있다. 종속 변수가 셋 이상인 경우에는 다항 로지스틱 분..

분할표본의 사용과 생성

분할표본의 사용과 생성 지도학습에서는 개발된 예측 또는 분류 모형을 새로운 데이터에 적용할 경우 얼마나 좋은 성과가 나타날 것인가에 대한 의문이 제기 된다. 특히 모형이 실제로 실행 될 때 가장 좋은 성과를 보이는 것으로 생각되는 모형을 선택 할 수 있도록 다양한 모형들 사이의 성과를 비교하는 것이 주요 관심사가 된다. 일반적으로 생각하기에 미래의 데이터를 가진 주요 성과변수를 잘 분류하거나 예측하는 모형을 선택하는 것이 최선이라고 생각할 수 있지만 모형의 구축과 모형의 성과 평가에 동일한 데이터를 사용할 경우 모형의 편의(bias)가 발생한다. 같은 데이터를 적용하여 가장 좋은 성과를 보이는 모형을 선택할 때 이 모형의 성과가 좀더 좋은 이유는 다음과 같다. 선택된 모형이 비교우위의 모형이기 때문이다...

데이터 전처리(preprocessing)와 정제(Cleansing)과정

데이터 전처리(preprocessing)와 정제(Cleansing)과정 데이터 수집은 내부 데이터(이미 내가 가지고 있거나 운용할 수 있는 데이터)와 외부 데이터(카드사의 정보, 기타 외부 기관의 정보)가 있으며 대량의 데이터로부터 무작위로 표본을 추출한다. 이렇게 수집된 데이터는 그대로 활용 할 수가 없다. 수집한 데이터가 타당한 조건의 데이터인지 검증 및 정제를 하여 활용 할 수 있는 데이터로 만들어야 한다. 잘못된 샘플링(수집된 데이터) 데이터는 엉뚱한 결과를 발생 시키므로 전처리 미 및 정제 과정은 매우 중요하다. 변수의 유형 변수를 분류하는 방법에는 여러 가지가 있으며 가장 기본적으로는 수치형, 텍스트형(문자형)이 있다. 이 변수들은 다시 연속형(주어진 범위의 실수), 정수형(정수값), 범주형(..

데이터 마이닝 수행 단계

데이터 마이닝 수행 단계 데이터 마이닝 또는 데이터를 분석하는데 있어서 가장 큰 오류 중 하나는 문제에 대한 잘못 된 인식이다. 때로는 어떤 문제를 찾기 위해 분석하고자 목표가 명확하지 않을 때도 있다. 따라서 분석 또는 마이닝을 할 때는 문제에 대한 이해와 목표 등의 명확한 명세가 필요 하다. 다음 순서를 통해서 일반적으로 마이닝 프로젝트를 수행 하는 단계를 살펴 보도록 하자. 마아닝의 모형 구축에 필요한 데이터는 평가용 데이터, 학습용 데이터, 검증용 데이터 의 3종류로 나눌 수 있다. [평가용 데이터] 평가용 데이터는 모형을 적합화 하는 과정의 일부분에 속한다. 따라서 평가용 데이터는 최종적으로 채택된 모형을 새로운 데이터에 적용할 때 발생하는 오차보다 과소 평가 될 수 있다. 그 이유는 평가용 데..

지도학습과 자율학습

지도학습과 자율학습 데이터 마이닝 기법에서 지도학습과 자율학습이 있다. 지도 학습은 분류와 예측을 위해 사용되는 알고리즘이며 자율 학습은 예측 또는 분류를 위해 필요한 출력변수가 없는 경우 사용되는 알고 리즘이다. [지도학습(Supervised Learning)] 지도학습(Supervised Learning)은 훈련 데이터(Training Data)로부터 하나의 함수를 유추해내기 위한 기계 학습(Machine Learning)의 한 방법이다. 훈련 데이터는 일반적으로 입력 개체에 대한 속성을 벡터 형태로 포함하고 있으며 각각의 벡터에 대해 원하는 결과가 무엇인지 표시되어 있다. 이렇게 유추된 함수 중 연속적인 값을 출력하는 것을 회귀분석(Regression)이라 하고 주어진 입력 벡터가 어떤 종류의 값인..

데이터 마이닝에 사용되는 주요 개념

데이터 마이닝에 사용되는 주요 개념 분류(Classification) 분류(Classification)는 데이터 분석의 가장 기본적인 형태이다. 예를 들어 어떤 제품을 판매 하고 있다고 할 때 구매한 사람과 구매하지 않은 사람 또는 구매 제안에 대해 반응한 사람과 반응하지 않은 사람으로 분류 할 수 있다. 데이터 마이닝의 일반적인 임무는 분류 결과가 알려져 있지 않거나 미래에 발생 할 경우 어떤 분류 결과가 나타나는지 또는 나타날 것인지 예측할 목적으로 데이터를 조사하는 것이다. 즉 분류결과가 알려진 유사 데이터를 사용하여 규칙들을 찾아낸 다음 그 규칙들을 분류결과가 알려지지 않은 해당 데이터에 적용하는 것이다. 예측(Prediction) 예측(Prediction)은 집단(구매자/비구매자) 변수보다 수치..

데이터 마이닝의 용어정리

데이터 마이닝의 용어정리 데이터 마이닝은 다양한 분야가 융합된 학문이기 때문에 동일한 의미에 대해서 다양한 용어가 사용된다. 또는 같은 용어를 사용하더라도 학문에 따라 비슷하지만 약간씩 다르게 해석 된다. 예를 들어 알고리즘 이라는 단어만 살펴 보아도 쓰이는 학문에 따라 다르게 해석 될 수도 있다. [알고리즘(algorithm)] 수학 용어사전: 잘 정의되고 명백한 규칙들의 집합 또는 유한 번 의 단계 내에서 문제를 풀기 위한 과정 컴퓨터 용어사전: 어떤 문제를 해결하기 위해 명확히 정의된 유한개의 규칙과 절차의 모임 전기 용어사전: 어떤 문제를 유한 회의 스텝으로 풀기 위한 명확하게 규정된 법칙. 소정의 수순 집합 비파괴 검사 용어사전 : 계산 순서 또는 문제 해결을 위한 순서 광물자원 용어사전 : 특..